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Abstract

Adversarial attacks threaten machine learning models
by introducing subtle perturbations, leading to misclassi-
fications. Existing purification techniques focus on full re-
construction, often overlooking contextual information from
advanced multimodal models.

We propose a segmentation-guided adversarial purifica-
tion approach that integrates multimodal context for robust
defense. Utilizing segmentation data and Stable Diffusion
inpainting, our method selectively restores perturbed re-
gions while preserving unaffected areas. Evaluations on the
COCO dataset with FGSM, PGD, and CW attacks show sig-
nificant improvements in classification accuracy over base-
line methods. Key contributions include a context-aware
purification pipeline, a new adversarial dataset, and en-
hanced defenses for multimodal models. This work lays the
groundwork for robust, context-aware adversarial defenses.

1. Introduction
Adversarial attacks pose a significant challenge in mod-

ern machine learning systems, particularly in multi-modal
models like CLIP. These attacks introduce imperceptible
perturbations into input data, causing incorrect predictions
or classifications and undermining the reliability of down-
stream tasks. The security risks associated with these at-
tacks have motivated the development of adversarial purifi-
cation techniques. However, existing methods focus pri-
marily on total reconstruction without leveraging the rich
multimodal information available in models like CLIP. This
gap highlights the need for more context-aware approaches
to adversarial purification.

In this work, we address the precise problem of adver-
sarial purification in multi-modal classifiers by proposing a
novel approach that incorporates partial reconstruction. Un-
like existing methods that rely on contextless total recon-
struction using diffusion models, our approach utilizes seg-
mentation data and object detection text labels to provide

critical contextual information. By integrating this multi-
modal context, we aim to improve purification performance
and mitigate the errors introduced in purely reconstruction-
based pipelines. Furthermore, our method extends adver-
sarial purification efforts beyond simple classification, ad-
dressing the broader transferability of adversarial attacks
across different models.

Existing methods attempt to recover an adversarially at-
tacked image by denoising or reconstructing it entirely.
These include techniques such as CIIDefence by Puneet
Gupta, which fuses class-specific image inpainting and im-
age denoising; Denoising Diffusion Probabilistic Models as
a defense against adversarial attacks by Lars Ankile; and
Diffusion Models for Adversarial Purification by Weili Nie.
While these approaches achieve varying degrees of success,
they do not fully exploit the multimodal nature of models
like CLIP, nor do they adequately address the contextual
nuances introduced by segmentation and object detection.

Our proposed solution introduces a more targeted
method for adversarial purification. By leveraging bound-
ing box or segmentation data from a noised image, we use
Stable Diffusion inpainting to recover unaffected regions
while eliminating noise in the rest of the image. This ap-
proach, which combines classification subtasks with tar-
geted reconstruction, adds crucial contextual information to
the purification process, yielding more robust performance
against adversarial attacks.

Specifically, this paper makes the following key contri-
butions:

• Context-Aware Adversarial Purification: We pro-
pose a novel purification method that leverages seg-
mentation and object detection data with Stable Dif-
fusion inpainting, improving robustness against adver-
sarial attacks.

• Adversarial Dataset Creation: We generate a dataset
of adversarially attacked images based on the COCO
dataset, using FGSM, DeepFool, and PGD methods to
support evaluation and benchmarking.

• Enhanced Multimodal Defenses: Our approach ex-
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tends adversarial purification capabilities by integrat-
ing multimodal context, demonstrating superior per-
formance over existing methods in recovering attacked
images and preserving classification accuracy.

2. Related Work

Adversarial attacks such as FGSM, DeepFool, PGD, and
CW attacks exploit model vulnerabilities by introducing im-
perceptible perturbations to input data, often leading to mis-
classifications. FGSM and PGD use gradient-based meth-
ods to craft adversarial examples, while DeepFool mini-
mizes distortion to reach decision boundaries, and CW at-
tacks optimize perturbations to minimize classification mar-
gins. These methods have become standard benchmarks for
evaluating adversarial defenses.

Existing defense strategies focus on recovering attacked
images through various techniques. CIIDefence fuses class-
specific inpainting and image denoising, while diffusion-
based methods such as Denoising Diffusion Probabilistic
Models (Ankile et al.) and Diffusion Models for Adver-
sarial Purification (Nie et al.) show promise in reconstruct-
ing adversarially perturbed images. Zhang et al. proposed
a versatile defense framework for image recognition, but
these methods generally lack context-awareness or fail to
utilize multimodal information.

Our work advances these efforts by introducing a
context-aware adversarial purification approach that incor-
porates segmentation and object detection data with Sta-
ble Diffusion inpainting. By leveraging multimodal con-
text, we enhance image recovery and classification accu-
racy while addressing transferability in adversarial attacks.
Additionally, we contribute a new adversarial dataset based
on COCO with perturbations generated using FGSM, Deep-
Fool, and PGD, providing a benchmark for evaluating fu-
ture adversarial purification methods.

3. Methods

This section outlines the process of generating adversar-
ial images to evaluate vulnerabilities in multi-modal mod-
els, as well as the proposed adversarial purification method
leveraging segmentation-guided inpainting.

3.1. Generating Adversarial Images

To systematically evaluate the robustness of multi-modal
models like CLIP against adversarial perturbations, we cu-
rated subsets of the COCO dataset. The dataset was incre-
mentally scaled from 10 to 1,000 images to ensure scalabil-
ity and consistency of the evaluation. Each image contained
multiple distinct objects with diverse labels, offering a chal-
lenging scenario for classification models. Adversarial per-
turbations were introduced using the following methods:

Fast Gradient Sign Method (FGSM) FGSM is a single-
step attack that modifies pixel values along the gradient di-
rection of the loss function with respect to the input image:

x′ = x+ ϵ · sign(∇xJ(θ, x, y)) (1)

where x is the original image, x′ is the adversarial image,
ϵ controls the perturbation strength, J is the loss function,
and ∇xJ is the gradient. FGSM was tested with ϵ values
of 0.05, 0.1, 0.15, and 0.2. Success was measured by a
change in the predicted label post-perturbation, showing a
direct relationship between larger ϵ values and higher attack
success rates.

Projected Gradient Descent (PGD) PGD extends
FGSM by iteratively applying small perturbations con-
strained within an ϵ-ball:

x′(t+1) = ΠBϵ(x)

(
x′(t) + α · sign(∇x′J(θ, x′, y))

)
(2)

where ΠBϵ(x) is the projection operator onto the ϵ-ball
around x, and α is the step size. We used α = 0.01 and 40
iterations for both untargeted and targeted attacks, achiev-
ing success rates exceeding 90% in targeted scenarios.

Carlini-Wagner (CW) Attacks CW attacks optimize
perturbations to minimize the L2-norm between adversar-
ial and original images while maximizing misclassification
confidence:

min ∥x′ − x∥2 + c · f(x′) (3)

where f(x′) is the misclassification objective. Parameters
such as κ = 10 (confidence margin) and 1,000 iterations
were used. CW attacks proved computationally intensive
but highly effective in crafting imperceptible and targeted
adversarial perturbations.

—

3.2. Adversarial Purification with Conditioned In-
painting

Our adversarial purification approach integrates segmen-
tation models and Stable Diffusion to selectively recover at-
tacked regions, addressing the limitations of global recon-
struction methods.

Segmentation-Guided Inpainting Segmentation masks
are generated using models such as DERT-ResNet-50, RT-
DERT, and YOLOS-Small. These masks identify attacked
regions, ensuring precise and efficient reconstruction:

• DERT-ResNet-50 and RT-DERT: Provide precise
bounding box predictions.



• YOLOS-Small: Offers refined, smaller bounding
boxes for overlapping objects.

• SuperPoint+GMM: Generates unsupervised masks
using clustering techniques.

Stable Diffusion-Based Reconstruction The purifica-
tion process leverages Stable Diffusion conditioned on seg-
mentation masks. This approach preserves unaffected re-
gions while reconstructing adversarially perturbed areas.
Initial experiments used partial inpainting without masking
as a baseline, but segmentation-guided inpainting signifi-
cantly improved contextual integrity and accuracy.

Figure 1. Adversarial purification using segmentation-guided in-
painting.

4. Experiments, Results, Ablations
This section evaluates the performance of our

segmentation-guided adversarial purification approach
through detailed experiments, comparing it against baseline
methods and analyzing its effectiveness under various
conditions.

4.1. Experimental Setup

Experiments were conducted using subsets of the COCO
2017 dataset. To ensure scalability and robustness of the
evaluation, the dataset size was incrementally increased
from 10 to 1,000 images. Each image contains diverse
objects with complex interactions, providing a challenging
testbed for adversarial purification.

Adversarial perturbations were introduced using stan-
dard methods: FGSM [?], PGD [?], and CW [?]. For
FGSM, the perturbation strengths (ϵ) ranged from 0.05 to
0.2, while PGD employed 40 iterations with a step size of
0.01. CW attacks were configured with a confidence margin
of 10 and up to 1,000 iterations.

Metrics Two primary metrics were utilized to evaluate
purification performance:

• Attack Success Rate (ASR): Proportion of adversar-
ial images that caused misclassification.

• Precision: Evaluates recovery accuracy across 79
multiclass labels, accounting for sparsity in the target
distribution.

Dataset Characteristics The COCO dataset subsets were
designed to reflect real-world scenarios. The class distribu-
tion, object density, and label sparsity metrics are summa-
rized in Table 1.

Dataset Classes Images Avg. Objects/Image
Small Subset 10 100 3.2
Medium Subset 50 500 5.1
Full Subset 79 1000 7.8

Table 1. COCO dataset statistics used for experimentation.

4.2. Baselines

To evaluate the proposed approach, we compared it
against several baseline methods:

• Naive Diffusion (SD2): A global reconstruction ap-
proach using Stable Diffusion without segmentation
masking.

• CIIDefense [?]: A class-specific image inpainting and
denoising method.

• Denoising Diffusion Models [?]: A probabilistic
model-based purification technique.

Baseline methods were implemented with settings con-
sistent with their respective publications to ensure fair com-
parison.

4.3. Results

4.3.1 Adversarial Attack Analysis

Adversarial attack success rates are summarized in Figure 2.
For FGSM, higher ϵ values significantly increased attack
success rates, with ϵ = 0.2 achieving over 64% ASR. Simi-
lar trends were observed for PGD and CW attacks.

4.3.2 Adversarial Purification Performance

The precision of clean, adversarial, and purified images is
presented in Figure 3. Clean images achieved a precision
of 0.8, adversarial images dropped to 0.5, and purified im-
ages improved to 0.72 using segmentation-guided inpaint-
ing, outperforming the naive baseline.

4.3.3 Qualitative Results

Qualitative results in Figure 4 illustrate the recovery of se-
mantic integrity in purified images. The proposed approach



Figure 2. FGSM attack success rates with varying ϵ.

Figure 3. Precision comparison for clean, adversarial, and purified
images.

Figure 4. Qualitative results for adversarial and purified images.
Left: Adversarial image (ϵ = 0.1), Right: Purified image.

restored critical image features while preserving contextual
details.

—

4.4. Ablation Studies

Ablation experiments were conducted to isolate the con-
tributions of various components:

• Masking vs. No Masking: Segmentation-guided
masking improved precision by 18% compared to no
masking.

• Segmentation Models: YOLOS-Small performed
best, achieving a 10% improvement in precision over
DERT-ResNet-50.

• Perturbation Strength: Higher ϵ values reduced pu-
rification effectiveness, highlighting the need for ro-
bust segmentation strategies.

4.5. Discussion

The proposed segmentation-guided inpainting method
demonstrated strong performance in recovering adversari-
ally perturbed images. Key improvements were observed
in preserving semantic integrity and classification accuracy.
However, challenges remain in densely packed scenes with
overlapping objects. Future work will explore hybrid ap-
proaches combining segmentation and object detection for
further robustness.

5. Discussion and Conclusion
This work presents a segmentation-guided inpainting ap-

proach for adversarial purification, achieving significant im-
provements in precision and robustness compared to naive
reconstruction methods. By leveraging segmentation masks
to guide diffusion-based recovery, our method selectively
addresses perturbed regions while preserving unaffected ar-
eas. Despite its strengths, several limitations remain:

Limitations: Our approach struggles with high noise
levels, as the inpainting process becomes less reliable un-
der strong perturbations. Not all inpainting pipelines are
equally efficient, and balancing diffusion model capability
with runtime remains a challenge. Additionally, FGSM-
based attacks can unintentionally corrupt visual properties,
complicating evaluation across different VLMs. Lastly,
multiclass classification remains difficult to evaluate due to
sparse target vectors, so a different surrogate for VLM ef-
fectiveness might be a point to research.

Future Directions: Promising directions include ex-
tending this approach to multimodal tasks, such as Visual
Question Answering, and evaluating robustness against tar-
geted attacks. Improving pipeline efficiency through alter-
native segmentation and inpainting techniques is essential
for scalability. Finally, creating a diverse adversarial dataset
will enable broader benchmarking and further enhance ro-
bustness.

In summary, our results demonstrate that segmentation-
guided inpainting is a modestly effective solution for adver-
sarial purification. Future work should explore its applica-
tion to multimodal scenarios and complex adversarial tasks,
as well as more complex inpainting pipelines, paving the
way for more resilient vision-language systems.



Student Name Contributed Aspects Details
Rodrigo B. Loza Segmentation and Inpainting Implemented the segmentation pipeline and inpainting process, gener-

ated and analyzed results, drafted the report, prepared slides, and par-
ticipated in discussions.

Yilun Zhou Dataset and Detection, Documentation Implemented the noised dataset, set up segmentation/image detection
pipeline, drafted the report, prepared slides, and participated in discus-
sions.

Jiachun Zhang Documentation and Presentation Drafted and prepared slides, participated in discussions.

Table 2. Contributions of Team Members

6. Work Division
The division of work among team members is sum-

marized in Table 2. Each member contributed to distinct
aspects of the project, ensuring its successful completion
through collaborative efforts.
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